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Abstract-The penetration distance ofa diffusant from a thoroughly mixed mediuminto a second, polymeric 
medium with moving boundary is calculated by means of a balance equation and is compared with 

experimental values. 

NOMENCLATURE 

position of boundary ; 
position of boundary at time t = 0; 
area ; 
concentration of diffusant ; 
concentration of diffusant at boundary; 
initial concentration in the first, limited 
medium ; 
constant concentration at boundary; 
diffusivity of diffusant ; 
total amount of ditTusant ; 
exponent ; 
penetration distance of diffusant ; 
total amount of diffusant normalized by area 
[equation (2)] ; 
time ; 
moving velocity of boundary ; 
distance from origin ; 
distance from boundary. 

FORMULATtON 

THE DIFFUSION of a solute is considered which is 
proceeding from a first, limited medium into a second, 
unlimited medium. The total amount of diffusant is 
constant and initially restricted to the first medium. 
The boundary between both media may migrate with 
constant velocity into the direction of the second 
medium. Within the first medium, equipartition of the 
diffusant is maintained, e.g. by rapid diffusion or 
convection, throughout the equilibration process. 
Within the second medium, a cubic profile of 
concentration is supposedly at steady-state, see [l] 

(Fig. I), 
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FK;. 1. Concentration distribution with moving boundary. 

c(t)=~~(r)[l-*T for x>a, (1) 

with 

and 

a(t) = a, + ut 

da 

v=&’ 

As to the total amount, normalized by area, we then 
have 

Q = ; = c,(t) . a(t) + 
s 

ow+q 

df) 

and following integration 

Q = c,(t) a(t) + f . 
[ 1 

In an infinitesimal boundary layer advancing into 
positive x-direction, the equilibrium condition for the 
amount of diffusant exchanged per unit area and per 
unit time is: the amount of substance diffusing into 
the boundary layer from the left, augmented by the 
amount of substance gathered by the advance of the 
boundary layer, is equal to the amount of substance 
diffusing out to the right. In mathematical terms: 

c(t) dx, (2) 

(3) 

_Dw-,t) w+, 0 ~ + vc(a+,t) = -D- 
ax ax (4) 

Because of the even concentration profile of diffusant 
within the first (left) medium, we have: 

Therefore, formula (4) assumes the simplified form : 

W+,t) o 

vc(a+,t) + D- = 
ax 

which states: the amount of substance gathered by the 
advancing boundary layer is, in equilibrium, diffusing 
totally into advancement direction, i.e. it follows the 
concentration gradient. 
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Substitution of (1) into (6) results in : 

which constitutes a connection between the 
penetration distance of a diffusant, its diffusivity, and 
the advancement of the boundary. 

The concentration of the diffusant can then be 
calculated from (3) and (7) to give: 

c,(t) = 
Q 

a(t) + g 

DISCUSSION 

The presented case of diffusion with moving 
boundary is of significance, e.g. for the dissolution of 
polymeric substances. According to Peterlin [2], the 

concentration profile within polymers is approaching 
the exponential limit distribution 

c=c,exp-F. 

The concentration within the first medium of the 

diffusant is thus supposed to be constant (c,J 
throughout the equilibration process. The present 
considerations are relating to the case, close to 
practice, that the concentration within the first 
medium is declining because of mass transfer across 
the boundary. 

Figure 2 points out an experimental example of 
diffusion of the physiologically inert, radioactively 
labelled 5’Cr-EDTA into a dissolving fibrin clot from 
human plasma, containing 1000 I.U. of the fibrinolytic 
streptokinase per millilitre. The experimental design 
permits to scan the radioactivity distribution from 
outside, thus circumventing concentration measure- 
ments [3]. The apparent drop in radioactivity on 

the plasma-side before the boundary, however, is 
geometrically due to the finite diameter of the detector- 
orifice. In fact, the radioactivity within the first 
medium is always equipartite. 

Given a ‘lCr-EDTA diffusivity of 6 x 10e6 cm2 s- ’ 
and a boundary migration velocity of 6.9 x 10m6 cm 
s-l, the resulting exponential limit distribution will 
assume a half band width of 0.6cm, according to 
equation (9). Furthermore, equation (7) states the 
penetration depth to amount to 2.6 cm, corresponding 
to an exponential limit distribution c/co = 0.05. Figure 
2 demonstrates conformity between experimental and 
calculated values, where it has additionally to be taken 
into account, however, that the measurement accuracy 
will lessen with decreasing count rate, and that an 
equilibrium has still to be built up for the diffusion into 

the polymeric medium. 
With regard to the fact that a more rigorous 

mathematical treatment of Stefan problems-which 

include the present case-is an intricate enterprise 
(compare e.g. [4]), there is nevertheless remarkable 
conformity of the submitted simple calculations based 
on balance equations with distributions that are 
experimentally determined or calculated in another 
way. 
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APPENDIX 

The choice of a cubic concentration profile in (1) may at 
first seem rather arbitrary, particularly since quadratic 
statements are known too [S]. Subsequently an attempt 
will be made to establish theoretically the choice of the 
exponent n. 

The starting point is the generalized equation (1): 

C(t)=c,(t)[l-+J, x>a,. (10) 

Boundary area at t Imml 

Distance (cm 1 

FIG. 2. Diffusion of 51Cr-EDTA from human plasma, containing 1000 I.-U. of streptokinase/ml, (on the left 
of boundary) into a dissolving fibrin clot (on the right of boundary). 
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Putting c,(t), respectively c0 in (9), equal to unity and fixing 
the coordinates’ origin to the moving boundary, the simplified 
equation 

(11) 

can be compared with the exponential concentration profile 
(9) (see Peterlin [2]) 

c(t) = exp - 5. (12) 

Optimal conformation of these two curves ought to be 
attained when the area between them reaches a minimum: 

Q 

J exp-Fdy- (13) 
0 

Prior substitution of (11) into (6) yields 

With regard to this relation, the calculation of the minimum 
problem results in the equation 

exp(n) = (n + 1)2 (15) 

with the approximate solution n 2 2.5. 

Equations (10) and (11) will thus assume the respective forms : 

C(f)=~~(f)[l-+j=, x>a, (16) 

and 

2.50 
q=-. 

t‘ 
(17) 

In addition this implies the choice of a dimensionless number. 
If qu/D < 2.5, then, with moving boundary diffusion, 
equilibrium is not yet attained. 

q2. 
u 

(14) 

UN CAS SPECIAL DE DIFFUSION AVEC FRONTIERE MOBILE 

Rbumk-On calcule a partir dune equation de bilan, la distance de penetration dun diffusant depuis un 
milieu parfaitement melange, dans un second milieu polymtrique avec front&e mobile et on compare avec 

les valeurs experimentales. 

Zusammenfassung-Es wird die Eindringtiefe einer dilfundierenden Substanz aus einer vollstandig 
durchmischten Phase in eine zweite polymere Phase bei wandernder Grenzllache mit Hilfe einer 

Bilanzgleichung berechnet und mit experimentellen Werten verglichen. 

‘IACTHbIH CJIYcIAZi JHI~~Y3MM C I-lOJJBHXHOii I-PAHMIJEH 

AHHOTauHB ~ Ha OCHOBe ypaBHeHHR 6anaHca pacc%iTaHa rpy6mta npOHHKHOBeHHB nHr$@ysaHTa ~3 
TutaTenbHo nepeMemaHHofi cpeabl B npyryro, nonnMepuym, cpeny c noneumuoA rpauuueR B nposeneuo 

CpaBHeHHe C 3KCnepHMeHTaJlbHbtMH AaHHbIMH. 


