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Abstract—The penetration distance of a diffusant from a thoroughly mixed medium into a second, polymeric
medium with moving boundary is calculated by means of a balance equation and is compared with
experimental values.

NOMENCLATURE

a, position of boundary;
do, position of boundary at time t = 0;

A, area;

¢, concentration of diffusant;

Cor concentration of diffusant at boundary;

C,0 initial concentration in the first, limited
medium;

Co» constant concentration at boundary;

D, diffusivity of diffusant;

total amount of diffusant;

exponent;

penetration distance of diffusant;

total amount of diffusant normalized by area
[equation (2)];

time;

moving velocity of boundary;

distance from origin;

» distance from boundary.
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FORMULATION

THE DIFFUSION of a solute is considered which is
proceeding from a first, limited medium into a second,
unlimited medium. The total amount of diffusant is
constant and initially restricted to the first medium.
The boundary between both media may migrate with
constant velocity into the direction of the second
medium. Within the first medium, equipartition of the
diffusant is maintained, e.g. by rapid diffusion or
convection, throughout the equilibration process.
Within the second medium, a cubic profile of
concentration is supposedly at steady-state, see [1]
(Fig. 1),
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Fi:. 1. Concentration distribution with moving boundary.

c(t) = ca(t)[l - i_—qa_(t)T for xza, (1)
with
a(t) =ay + vt
and
| _da
dt’

As to the total amount, normalized by area, we then
have

a(t) +
0-Y-cin-atn+ J “edx, @
A a(t)
and following integration
0- c,,(t)[a(t) - %] @)

In an infinitesimal boundary layer advancing into
positive x-direction, the equilibrium condition for the
amount of diffusant exchanged per unit area and per
unit time is: the amount of substance diffusing into
the boundary layer from the left, augmented by the
amount of substance gathered by the advance of the
boundary layer, is equal to the amount of substance
diffusing out to the right. In mathematical terms:

dcla_,t)

—D——+ ve(a,,t)= —
0x

D@c(aﬂt).

™ (4)

Because of the even concentration profile of diffusant
within the first (left) medium, we have:

Dac(a_,t) _

Ew 0. (5)

Therefore, formula (4) assumes the simplified form:

dclay,t)
ox

which states: the amount of substance gathered by the
advancing boundary layer is, in equilibrium, diffusing
totally into advancement direction, i.e. it follows the
concentration gradient.

ve(a,,t)+ D 0 (6)
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Substitution of (1) into (6) results in:

3D
qzia (7)
v
which constitutes a connection between the

penetration distance of a diffusant, its diffusivity, and
the advancement of the boundary.

The concentration of the diffusant can then be
calculated from (3) and (7) to give:

elt) = Lw. ®)
a(t) + E
DISCUSSION

The presented case of diffusion with moving
boundary is of significance, e.g. for the dissolution of
polymeric substances. According to Peterlin [2], the
concentration profile within polymers is approaching
the exponential limit distribution

yv
c=coexp ——.
D

©)
The concentration within the first medium of the
diffusant is thus supposed to be constant (c,)
throughout the equilibration process. The present
considerations are relating to the case, close to
practice, that the concentration within the first
medium is declining because of mass transfer across
the boundary.

Figure 2 points out an experimental example of
diffusion of the physiologically inert, radioactively
labelled 3'Cr-EDTA into a dissolving fibrin clot from
human plasma, containing 1000 I.U. of the fibrinolytic
streptokinase per millilitre. The experimental design
permits to scan the radioactivity distribution from
outside, thus circumventing concentration measure-
ments [3]. The apparent drop in radioactivity on
the plasma-side before the boundary, however, is
geometrically due to the finite diameter of the detector-
orifice. In fact, the radioactivity within the first
medium is always equipartite.
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Given a 3'Cr-EDTA diffusivity of 6 x 10" ®cm?s™!
and a boundary migration velocity of 6.9 x 10~ ®cm
s~ 1, the resulting exponential limit distribution will
assume a half band width of 0.6 cm, according to
equation (9). Furthermore, equation (7) states the
penetration depth to amount to 2.6 cm, corresponding
to an exponential limit distribution ¢/c, = 0.05. Figure
2 demonstrates conformity between experimental and
calculated values, where it has additionally to be taken
into account, however, that the measurement accuracy
will lessen with decreasing count rate, and that an
equilibrium has still to be built up for the diffusion into
the polymeric medium.

With regard to the fact that a more rigorous
mathematical treatment of Stefan problems-——which
include the present case—is an intricate enterprise
(compare e.g. [4]), there is nevertheless remarkable
conformity of the submitted simple calculations based
on balance equations with distributions that are
experimentally determined or calculated in another
way.
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APPENDIX
The choice of a cubic concentration profile in (1) may at
first seem rather arbitrary, particularly since quadratic
statements are known too [5]. Subsequently an attempt
will be made to establish theoretically the choice of the
exponent n.
The starting point is the generalized equation (1):

ety = ca(t)[l - x—_q‘@} X > ag (10)
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Fic. 2. Diffusion of *!Cr-EDTA from human plasma, containing 1000 LU. of streptokinase/ml, (on the left
of boundary) into a dissolving fibrin clot (on the right of boundary).
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Putting c,(t), respectively ¢, in (9), equal to unity and fixing
the coordinates’ origin to the moving boundary, the simplified

equation
c(:)=<1-3>n (11)
q

can be compared with the exponential concentration profile
(9) (see Peterlin [2])
vy
c(t)=exp — —. 12)
(t) = exp D (
Optimal conformation of these two curves ought to be
attained when the area between them reaches a minimum:

re vy q y n .
J exp — —dy — 1 — =} dy = minimum! (13)
o D 0\ q

Prior substitution of (11) into (6) yields

nD
g=— (14)
v
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With regard to this relation, the calculation of the minimum
problem results in the equation

exp(n) = (n + 1)? (15)
with the approximate solution n = 2.5.

Equations (10) and (11) will thus assume the respective forms:

_ 25
o(t) = c,,(t)[l _z qam} , x>a, (16)

and

25D
g=—". an
v
In addition this implies the choice of a dimensionless number.
If go/D < 2.5, then, with moving boundary diffusion,
equilibrium is not yet attained.

UN CAS SPECIAL DE DIFFUSION AVEC FRONTIERE MOBILE

Résumé—On calcule 4 partir d'une équation de bilan, la distance de pénétration d’un diffusant depuis un
milieu parfaitement mélangé, dans un second milieu polymérique avec frontiére mobile et on compare avec
les valeurs expérimentales.

Zusammenfassung—Es wird die Eindringtiefe einer diffundierenden Substanz aus einer vollstindig
durchmischten Phase in eine zweite polymere Phase bei wandernder Grenzfliche mit Hilfe einer
Bilanzgleichung berechnet und mit experimentellen Werten verglichen.

YACTHBIA CIIYYAN AUGDY3IUU C MOABUXHOM I'PAHULIEN

Annorauus — Ha ocHoBe ypasHeHus GanaHca paccuMTana rpyGHHAa NPOHUKHOBEHHs mubGy3aHTa U3
TIIATE/IbHO NEPEMELLIAHHON CPeibl B IPYTYIO, OJHMEPHYIO, CPElly ¢ IOABUXHOM rPaHHIEH U IPOBENCHO
CPaBHEHHE C 3KCNEPUMEHTAIbHBIMHM JaHHBIMH.



